Modelling 1

 SUMMER TERM 2020oommes GUTENBERG UNIVERSITÄT MANZ

LECTURE 11
 Quadratic Functions

"Non-Linear Linear Algebra" Quadratic Forms

Multivariate Polynomials

Multi-variate polynomial of total degree d

- Polynomial function $f: \mathbb{R}^{n} \rightarrow \mathbb{R}$
- Any 1D section $f\left(\mathbf{x}_{0}+t \cdot \mathbf{r}\right)$ of degree $\leq d$ in t.
- Sum of degrees must be $\leq d$

Examples:

- $f(x, y):=x+x y+y$ has total degree 2. (diagonal!)
- General quadratic polynomial in two variables:

$$
f(x, y):=c_{20} x^{2}+c_{11} x y+c_{02} y^{2}+c_{10} x+c_{01} y+c_{00}
$$

Quadratic Polynomials

General Quadratic Polynomial

- $\mathbf{x}^{\mathrm{T}} \mathbf{A x}+\mathbf{b}^{\mathrm{T}} \mathbf{x}+\mathbf{c}$
- \mathbf{A} is an $n \times n$ matrix, \mathbf{b} is an n-dim. vector, \mathbf{c} is a number

Example

$$
\begin{aligned}
f\left(\binom{x}{y}\right) & =\left[\begin{array}{ll}
x & y
\end{array}\right]\left(\begin{array}{ll}
1 & 2 \\
3 & 4
\end{array}\right)\binom{x}{y} \\
& =\left[\begin{array}{ll}
x & y
\end{array}\right]\left(\begin{array}{ll}
1 x & 2 y \\
3 x & 4 y
\end{array}\right) \\
& =1 x^{2}+(3+2) x y+4 y^{2} \\
& =1 x^{2}+5 x y+4 y^{2}
\end{aligned}
$$

Quadratic Polynomials

General Quadratic Polynomial

- $\mathbf{x}^{\mathrm{T}} \mathbf{A x}+\mathbf{b}^{\mathrm{T}} \mathbf{x}+\mathbf{c}$
- \mathbf{A} is an $n \times n$ matrix, \mathbf{b} is an n-dim. vector, \mathbf{c} is a number

Normalization / Symmetry

- Matrix A can always be chosen to be symmetric
- If it isn't, we can substitute by $0.5 \cdot\left(\mathbf{A}+\mathbf{A}^{\top}\right)$, not changing the polynomial

Example

Example:

$$
\begin{aligned}
f\left(\binom{x}{y}\right) & =\left[\begin{array}{ll}
x & y
\end{array}\right]\left(\begin{array}{ll}
1 & 2 \\
3 & 4
\end{array}\right)\binom{x}{y} \\
& =\mathbf{x}^{T} \frac{1}{2}\left(\mathbf{M}^{T}+\mathbf{M}\right) \mathbf{x} \\
& =\left[\begin{array}{ll}
x & y
\end{array}\right]\left(\begin{array}{ll}
1 x & 2 y \\
3 x & 4 y
\end{array}\right) \\
& =1 x^{2}+(3+2) x y+4 y^{2} \\
& =1 x^{2}+(2.5+2.5) x y+4 y^{2} \\
& =\left[\begin{array}{ll}
x & y
\end{array}\right]\left(\begin{array}{cc}
1 & 2.5 \\
2.5 & 4
\end{array}\right)\binom{x}{y}
\end{aligned}
$$

Shapes of Quadrics

Shape analysis

${ }^{-} \mathbf{x}^{T} A x+b^{T} \mathbf{x}+c$

- \mathbf{A} is symmetric
- A can be diagonalized with orthogonal eigenvectors

$$
\mathbf{A}=\mathbf{U D U}^{\mathrm{T}}=\mathbf{U}\left(\begin{array}{lll}
\lambda_{1} & & \\
& \ddots & \\
& & \lambda_{n}
\end{array}\right) \mathbf{U}^{\mathrm{T}}
$$

- U contains principal axes
- D gives speeds of growth and up/down direction

Shapes of Quadratic Polynomials

$\lambda_{1}=1, \lambda_{2}=1$

$\lambda_{1}=1, \lambda_{2}=-1$

$\lambda_{1}=1, \lambda_{2}=0$

The Iso-Lines: Quadrics

hyperbolic

degenerate case

"Quadratics"

Quadrics

- Zero level set of a quadratic polynomial: "quadric"
- Shape depends on eigenvalues of \mathbf{A}
- b shifts the object in space
- c sets the level

Quadratic Polynomials

Specifying quadratic polynomials:

- Polynomial: $\mathbf{x}^{\mathrm{T}} \mathbf{A x}+\mathbf{b}^{\mathrm{T}} \mathbf{x}+\mathbf{c}$
- b: shifts the function in space
- Assuming full rank A

$$
\begin{aligned}
& (x-\mu)^{T} A^{\prime}(x-\mu)+c^{\prime} \\
& =\mathbf{x}^{\mathrm{T}} \mathbf{A}^{\prime} \mathbf{x}-\mu^{\mathrm{T}} \mathbf{A}^{\prime} \mathbf{x}-\mathbf{x}^{\mathrm{T}} \mathbf{A}^{\prime} \boldsymbol{\mu}+\mu^{\mathrm{T}} \mathbf{A}^{\prime} \boldsymbol{\mu}+c^{\prime}
\end{aligned}
$$

- c : additive constant

Some Properties

Important properties

- Multivariate polynomials of fixed degree form a vector space
- We can add them component-wise:

$$
\begin{array}{r}
2 x^{2}+4 x y+3 y^{2}+2 x+2 y+4 \\
+3 x^{2}+1 x y+2 y^{2}+5 x+5 y+5 \\
\hline \hline=5 x^{2}+5 x y+5 y^{2}+7 x+7 y+9
\end{array}
$$

Some Properties

Closed Space

- Vector notation:

$$
\begin{array}{cll}
\mathbf{x}^{\mathrm{T}} \mathbf{A}_{1} \mathbf{x} & +\mathbf{b}_{1}{ }^{\mathrm{T}} \mathbf{x} & +c_{1} \\
+\gamma\left(\mathbf{x}^{\mathrm{T}} \mathbf{A}_{2} \mathbf{x}\right. & +\mathbf{b}_{2}{ }^{\mathrm{T}} \mathbf{X} & \left.+c_{2}\right) \\
=\mathbf{x}^{\mathrm{T}}\left(\mathbf{A}_{1}+\gamma \mathbf{A}_{2}\right) \mathbf{x}+\left(\mathbf{b}_{1}+\gamma \mathbf{b}_{2}\right)^{\mathrm{T}} \mathbf{X}+\left(c_{1}+\gamma c_{2}\right)
\end{array}
$$

Quadratic Optimization

Quadratic Optimization

- Minimize quadratic objective function

$$
\mathbf{x}^{\mathrm{T}} \mathbf{A x}+\mathbf{b}^{\mathrm{T}} \mathbf{x}+\mathrm{c}
$$

- Required: A > 0 (all eigenvalues positive)
- It's a paraboloid with a unique minimum
- The vertex (critical point) can be determined by simply solving a linear system
- Necessary and sufficient condition

$$
2 A x=-b
$$

Condition Number

How stable is the solution?

- Depends on Matrix A

Regularization

Regularization

- Sums of positive semi-definite matrices are positive semi-definite
- "Valleys can only get steeper"
- Add regularizing quadric
- "Fill in the valleys"
- Bias in the solution

$$
\mathbf{A}+\in \mathbf{I}
$$

Example

- Original: $\quad \mathbf{x}^{T} \mathbf{A x}+\mathbf{b}^{\mathrm{T}} \mathbf{x}+\mathbf{c}$
- Regularized: $\mathbf{x}^{\mathrm{T}}(\mathbf{A}+\boldsymbol{\mathbf { I }}) \mathbf{x}+\mathbf{b}^{\mathrm{T}} \mathbf{x}+\mathbf{c}$

Constraint Optimization (the other way round)

Rayleigh Quotient

Relation to eigenvalues:

- Min/max eigenvalues of a symmetric A

$$
\lambda_{\text {min }}=\min \frac{x^{T} A \mathbf{x}}{\mathbf{x}^{T} \mathbf{X}}=\min _{\|\mathbf{x}\|=1} \mathbf{x}^{\mathrm{T}} \mathbf{A x} \quad \lambda_{\text {max }}=\max \frac{\mathbf{x}^{\mathrm{T}} \mathbf{A x}}{\mathbf{X}^{\mathrm{T}} \mathbf{X}}=\max _{\|\mathbf{x}\|=1} \mathbf{x}^{\mathrm{T}} \mathbf{A x}
$$

- The other way round
- Eigenvalues solve a special constraint optimization problem
- Hyper-sphere domain
. "Non-convex"

Coordinate Transformations

One more interesting property:

- Symmetric positive definite ("SPD") matrix A
- Symmetric
- All eigenvalues positive
- A can be written as square of another matrix

$$
A=U D U^{T}=(U \sqrt{D}) \cdot\left(\sqrt{D}^{\mathrm{T}} U^{\mathrm{T}}\right)
$$

$$
" \sqrt{\mathrm{D}} \gg=\left(\begin{array}{ccc}
\sqrt{\lambda_{1}} & & \\
& \ddots & \\
& & \sqrt{\lambda_{1}}
\end{array}\right)
$$

SPD Quadrics

$$
\mathbf{A}=\mathrm{UD}^{\mathrm{T}}=(\mathrm{U} \sqrt{\mathrm{D}})^{2}
$$

Interpretation

$$
\mathrm{x} \rightarrow(\mathrm{U} \sqrt{D}) \mathrm{x}
$$

- Start with unit quadric $\mathbf{x}^{T} \mathbf{x}$.
- Scale the main axis (diagonal of D)
- Rotate to a different coordinate system (columns of U)
- Recovering main axis from A:
"principal component analysis" (PCA)

